

Section 6 Very Large Scale Methods

6.1 MATRIX-FREE METHODS CONVERGENCE FRAMEWORK

Matrix Free Methods

• Parallel computing: avoid factorization and return only matrix-vector products (and not matrices) . $d \to |\overline{\text{Model}}| \to B * d$

$$d, x_k \to \boxed{\text{Model}} \to \nabla^2_{xx} f(x_k) * x$$

- The last version in particular can be particularly efficiently carried out with Automatic Differentiation.
- Most common algorithms in optimization: Krylov Algorithms (Lanczos, modified CG).
- But I must deal with early termination (I will not wait n steps) and indefinite matrices.

Framework for Early termination: Inexact Newton

Methods

• We modify the original Newton method:

$$\nabla^2 f_k p_k^{N} = -\nabla f_k. \qquad \qquad \nabla^2 f_k p_k \approx -\nabla f_k.$$

• The residual:

$$r_k = \nabla^2 f_k p_k + \nabla f_k,$$

• CG loop termination rule

$$||r_k|| \leq \eta_k ||\nabla f_k||,$$

Convergence Result

• Main Result:

Theorem 7.1.

Suppose that $\nabla^2 f(x)$ exists and is continuous in a neighborhood of a minimizer x^* , with $\nabla^2 f(x^*)$ is positive definite. Consider the iteration $x_{k+1} = x_k + p_k$ where p_k satisfies (7.3), and assume that $\eta_k \leq \eta$ for some constant $\eta \in [0, 1)$. Then, if the starting point x_0 is sufficiently near x^* , the sequence $\{x_k\}$ converges to x^* and satisfies

$$\|\nabla^2 f(x^*)(x_{k+1} - x^*)\| \le \hat{\eta} \|\nabla^2 f(x^*)(x_k - x^*)\|,\tag{7.4}$$

for some constant $\hat{\eta}$ with $\eta < \hat{\eta} < 1$.

6.2 KRYLOV-TYPE METHODS FOR NONLINEAR UNCONSTRAINED OPTIMIZATION

Main Concern:

• How do I deal with indefiniteness of the matrices, since CG works only for positive definite matrices?

Line-Search CG

```
Algorithm 7.1 (Line Search Newton–CG).
 Given initial point x_0;
 for k = 0, 1, 2, \dots
         Define tolerance \epsilon_k = \min(0.5, \sqrt{\|\nabla f_k\|}) \|\nabla f_k\|;
         Set z_0 = 0, r_0 = \nabla f_k, d_0 = -r_0 = -\nabla f_k;
         for j = 0, 1, 2, \dots
                if d_i^T B_k d_j \leq 0
                          if i = 0
                                   return p_k = -\nabla f_k;
                          else
                                   return p_k = z_i;
                  Set \alpha_i = r_i^T r_i / d_i^T B_k d_i;
                  Set z_{i+1} = z_i + \alpha_i d_i;
                  Set r_{i+1} = r_i + \alpha_i B_k d_i;
                  if ||r_{i+1}|| < \epsilon_k
                          return p_k = z_{i+1};
                  Set \beta_{j+1} = r_{j+1}^T r_{j+1} / r_j^T r_j;
                  Set d_{i+1} = -r_{i+1} + \beta_{i+1}d_i;
         end (for)
         Set x_{k+1} = x_k + \alpha_k p_k, where \alpha_k satisfies the Wolfe, Goldstein, or
                  Armijo backtracking conditions (using \alpha_k = 1 if possible);
```

Note double iteration

 How come it works?
 CG itself is a descent method !!!

$$\eta_k = \min(0.5, \sqrt{\|\nabla f_k\|})$$

end

CG-Trust Region (STEIHAUG)

 $\min_{p \in \mathbb{R}^n} m_k(p) \stackrel{\text{def}}{=} f_k + (\nabla f_k)^T p + \frac{1}{2} p^T B_k p \quad \text{subject to } ||p|| \le \Delta_k,$

```
Algorithm 7.2 (CG-Steihaug).
Given tolerance \epsilon_k > 0;
Set z_0 = 0, r_0 = \nabla f_k, d_0 = -r_0 = -\nabla f_k;
if ||r_0|| < \epsilon_k
         return p_k = z_0 = 0;
for j = 0, 1, 2, ...
         if d_i^T B_k d_i \leq 0
                  Find \tau such that p_k = z_j + \tau d_j minimizes m_k(p_k) in (4.5)
                          and satisfies ||p_k|| = \Delta_k;
                 return p_k;
         Set \alpha_j = r_i^T r_j / d_i^T B_k d_j;
         Set z_{j+1} = z_j + \alpha_j d_j;
         if ||z_{i+1}|| \geq \Delta_k
                  Find \tau \geq 0 such that p_k = z_i + \tau d_i satisfies ||p_k|| = \Delta_k;
                  return p_k;
         Set r_{i+1} = r_i + \alpha_i B_k d_i;
         if ||r_{i+1}|| < \epsilon_k
                 return p_k = z_{i+1};
         Set \beta_{j+1} = r_{j+1}^T r_{j+1} / r_j^T r_j;
         Set d_{i+1} = -r_{i+1} + \beta_{i+1}d_i;
end (for).
```

- Only inner loop.
- Define forcing sequence as LS-CG
 - Iterate in x.

6.3 LANCZOS ALGORITHMS FOR UNCONSTRAINED OPTIMIZATION

A shortcoming of CG methods

- They accept even SMALL negative curvature foregoing more promising directions.
- Solution: try to approximate the spectrum of the Hessian, using the Lanczos algorithm

Conjugate Gradients and Lanczos Algorithm (Tremolet)

• The conjugate gradient algorithm minimizes a quadratic function with a symmetric positive-definite Hessian:

$$J(x) = \frac{1}{2}x^T A x + b^T x + c$$

☐ The algorithm is:

$$x_{k+1} = x_k + \alpha_k d_k$$

step to the line minimum

$$g_{k+1} = g_k + \alpha_k A d_k$$

recalculate the gradient

$$d_{k+1} = -g_{k+1} + \beta_k d_k$$

calculate a new direction

where:

$$d_0 = -g_0$$
 $\alpha_k = \frac{\langle g_k, g_k \rangle}{\langle d_k, Ad_k \rangle}$ $\beta_k = \frac{\langle g_{k+1}, g_{k+1} \rangle}{\langle g_k, g_k \rangle}.$

 \Box Eliminate d_k to get the 3-term recurrence (Lanczos):

$$Ag_{k+1} = -\frac{\beta_k}{\alpha_k} g_k + \left(\frac{\beta_k}{\alpha_k} + \frac{1}{\alpha_{k+1}}\right) g_{k+1} - \frac{1}{\alpha_{k+1}} g_{k+2}$$

Lanczos Orthogonalization Procedure

• It orthogonalizes the Krylov space

(K2)
$$\Rightarrow S_k = \{r_0, Ar_0, \dots, A^{k-1}r_0\} = K_k(A, r_0)$$
 (K2)

• But the iteration works even if the matrix is NOT positive definite !!!

• The coefficients are found without needing d; by just eliminating g_(k+2). EXPAND

$$Ag_{k+1} = -\frac{\beta_k}{\alpha_k}g_k + \left(\frac{\beta_k}{\alpha_k} + \frac{1}{\alpha_{k+1}}\right)g_{k+1} - \frac{1}{\alpha_{k+1}}g_{k+2}$$

Conjugate Gradients and Lanczos Algorithms

- Let Q_k be the matrix whose columns are $g_i/\|g_i\|$.
- Then $AQ_k = Q_k T_k + g_k e_k^T$ where T_k is tri-diagonal and $e_k^T = (0, \dots, 0, 1)$
- After N iterations, we get $Q_N^T A Q_N = T_N$.
- i.e. T_N has the same eigenvalues as A.
- Intermediate matrices have interleaving eigenvalues:

$$\lambda_{j-1}(T_k) \ge \lambda_j(T_{k+1}) \ge \lambda_j(T_k)$$

• Even for $k \ll N$, "the spectrum range" is well approximated.

Lanczos Iteration

```
\begin{aligned} q_0 &= 0 \\ \beta_0 &= 0 \\ x_0 &= \text{arbitrary nonzero starting vector} \\ q_1 &= x_0/\|x_0\|_2 \\ \text{for } k &= 1, 2, \dots \\ u_k &= Aq_k \\ \alpha_k &= q_k^H u_k \\ u_k &= u_k - \beta_{k-1}q_{k-1} - \alpha_k q_k \\ \beta_k &= \|u_k\|_2 \\ \text{if } \beta_k &= 0 \text{ then stop} \\ q_{k+1} &= u_k/\beta_k \end{aligned} end
```

Unless it breaks down, produces orthogonal basis of Krylov space and a tridiagonal matrix similar to A.

Lanczos iteration

ullet α_k and β_k are diagonal and subdiagonal entries of symmetric tridiagonal matrix T_k

 If β_k = 0, then algorithm appears to break down, but in that case invariant subspace has already been identified (i.e., Ritz values and vectors are already exact at that point)

Lanczos iteration

- In principle, if Lanczos algorithm were run until k = n, resulting tridiagonal matrix would be orthogonally similar to
- In practice, rounding error causes loss of orthogonality, invalidating this expectation
- Problem can be overcome by reorthogonalizing vectors as needed, but expense can be substantial
- Alternatively, can ignore problem, in which case algorithm still produces good eigenvalue approximations, but multiple copies of some eigenvalues may be generated

Tridiagonal System

$$\begin{bmatrix} d_1 & u_1 & & & & 0's \\ l_1 & d_2 & u_2 & & & \\ & l_2 & d_3 & u_3 & & \\ & \ddots & \ddots & \ddots & \\ & & l_{n-2} & d_{n-1} & u_{n-1} \\ 0's & & & l_{n-1} & d_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_{n-1} \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_{n-1} \\ b_n \end{bmatrix}$$

- Tridiagonal matrices are EXTREMELY easy to factorize, solve with, and find eigenvalues of (if symmetric).
- $u = [u_1, u_2, ..., u_{n-1}]$
- $d = [d_1, d_2, ..., d_{n-1}, d_n]$
- $1 = [1_1, 1_2, ..., 1_{n-1}]$

LU decomposition of Tridiagonal Matrix (Cholesky similar)

$$\begin{bmatrix} 1 & & & & & & 0's \\ ll_1 & 1 & & & & & \\ & ll_2 & 1 & & & \\ & & \ddots & \ddots & & \\ & & & ll_{n-2} & 1 \\ 0's & & & & ll_{n-1} & 1 \end{bmatrix} \times \begin{bmatrix} dl_1 & ul_1 & & & 0's \\ & dl_2 & ul_2 & & \\ & & dl_3 & ul_3 & \\ & & \ddots & \ddots & \\ & & & dl_{n-1} & ul_{n-1} \\ 0's & & & & dl_n \end{bmatrix} = \begin{bmatrix} d_1 & u_1 & & & 0's \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & &$$

Using Lanczos for Optimization

• Solve trust-region (inner loop):

$$\min_{w \in \mathbb{R}^j} f_k + e_1^T Q_j(\nabla f_k) e_1^T w + \frac{1}{2} w^T T_j w \quad \text{subject to } ||w|| \le \Delta_k,$$

- Note, however, that you must store ALL vectors.
- But you will not truncate a promising direction just before it gives a negative inner product.
- Iteration continues, until a similar stopping test is reached (i.e residual=gradient is small)